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Abstract

The blackbody radiation problem within classical physics is reviewed. It is again suggested

that conformal symmetry is the crucial unrecognized aspect, and that only scattering by classical

electromagnetic systems will provide equilibrium at the Planck spectrum. It is pointed out that

the several calculations of radiation scattering using nonlinear mechanical systems do not preserve

the Boltzmann distribution under adiabatic change of a parameter, and this fact seems at variance

with our expectations in connection with derivations of Wien’s displacement theorem. By contrast,

the striking properties of charged particle motion in a Coulomb potential or in a uniform magnetic

field suggest the possibility that these systems will fit with classical thermal radiation. It may be

possible to give a full scattering calculation in the case of cyclotron motion in order to provide the

needed test of the connection between conformal symmetry and classical thermal radiation.
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A. Introduction

The blackbody radiation problem remains unsolved within classical physics. Although

the introduction of energy quanta a century ago has led to the currently accepted explanation

within quantum theory, there is still no firm conclusion as to whether or not blackbody

radiation can be explained within classical physics. In this article we discuss the current

situation and introduce new arguments which again[1] suggest that the classical solution

requires the restriction to purely electromagnetic systems where conformal symmetry is

involved.

A century ago, the mismatch between mechanics and electromagnetism was clearly evi-

dent. Traditional classical mechanics is invariant under Galilean symmetry transformation

whereas Maxwell’s equations are invariant under Lorentz transformation. Also, traditional

classical mechanics contains no scales or fundamental constants, whereas classical electro-

magnetism contains several fundamental constants, including a limiting speed of light in

vacuum c, a smallest electronic charge e, and Stefan’s blackbody radiation constant aS. It

follows that classical mechanics allows separate scalings of length, time, and energy, whereas

classical electromagnetism allows only a single scaling which couples together the scales of

length, time, and energy in conformal symmetry. Although the mismatch between me-

chanics and electromagnetism in connection with relativity has been decided in favor of the

Lorentz transformation of electromagnetism being the more fundamental, there has been

no such consensus regarding scaling. In the twentieth century, the mismatch between

mechanics and electromagnetism led to the development of a new mechanics, quantum me-

chanics, which ties together the scaling of time and energy through Planck’s constant ~

while still allowing any mechanical potential to enter the theory. Here we again suggest

the alternative resolution to the mismatch which regards classical electromagnetism as the

more fundamental theory. Perhaps the restriction to ”mechanical” systems which appear

from electromagnetic sources holds the key to a classical understanding of blackbody radi-

ation and also of at least some parts of atomic theory. This suggestion has recently been

bolstered by Cole and Zou’s simulation work obtaining the hydrogen ground state within

classical physics.[2]

In order to describe as much of nature as possible, classical electromagnetic theory must

include classical electromagnetic zero-point radiation as the homogeneous boundary condi-
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tion for Maxwell’s equations.[3] Zero-point radiation is random radiation which is homoge-

neous in space, isotropic in direction, and invariant under Lorentz transformation. Further-

more, it turns out that the zero-point radiation spectrum is the unique spectrum invariant

under conformal transformation.[4] The invariance requirements determine the spectrum

up to a multiplicative constant as an energy U per normal mode given by U = const × ω

where ω is the angular frequency of the radiation mode. In order to reproduce the ex-

perimentally observed van der Waals forces, the constant must be chosen as approximately

const = 0.525 × 10−34J sec, recognizable as const = (1/2)~ where ~ has the magnitude of

Planck’s constant.

Now if random classical zero-point radiation is present in the classical electromagnetic

theory at zero temperature, then all the ideas of tradition classical statistical mechanics are

invalid, except as high-temperature limits. (Just such a situation is also found in quantum

theory.) Also, if zero-point radiation is present, it is possible to give derivations of the

Planck spectrum of thermal radiation using classical physics from several different points of

view: energy equipartition for translational degrees of freedom[5], thermal fluctuations above

zero-point radiation[6], comparisons between diamagnetic and paramagnetic behavior[7], the

acceleration of point electromagnetic systems through zero-point radiation[8], and maximum

entropy ideas connected with Casimir forces[9].

However, despite these derivations, the problem of classical radiation equilibrium is not

completely solved by the introduction of classical electromagnetic zero-point radiation be-

cause the Planck spectrum with zero-point radiation can be shown to be unstable under

scattering by charged nonlinear mechanical systems. In 1924 van Vleck[10] solved the

Fokker-Planck equation for a general class of charged nonlinear mechanical systems in ran-

dom radiation (in the electric dipole approximation and small-charge limit) with the conclu-

sion that the mechanical system achieved equilibrium with random radiation only when the

mechanical system was distributed according to the Boltzmann distribution and the radia-

tion corresponded to the Rayleigh-Jeans spectrum. There were further calculations[11][12]

coming to this same conclusion in the 1970’s and 1980’s, including heroic calculations by

Blanco, et al.[13] regarding a relativistic charged particle in certain classes of mechanical

potentials.

These scattering calculations would seem to settle the matter in the negative from the

most fundamental point of view. After all, radiation equilibrium means the stability of
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the radiation spectrum under scattering by a charged particle. However, there is just one

failure of the scattering calculations–all of them excluded scattering by a Coulomb potential

or indeed by any purely electromagnetic system.

Here we are suggesting that this exclusion contains the very essence for understanding

classical radiation equilibrium All of the scattering calculations to date involve potentials

which contradict the conformal-related scaling symmetries of thermal radiation. We suggest

that only when purely electromagnetic scattering systems are used can we hope to obtain

the thermal radiation spectrum observed in nature.

B. Outline of the article

The outline of our discussion is as follows. We begin by noting the restrictive form of

scaling symmetry which follows from conformal symmetry and which holds in electromag-

netism. We then confirm the validity of this scaling for thermal radiation. Next we discuss

the contrasting nonrelativistic scattering calculations which appear in the literature. It is

pointed out that the nonrelativistic nonlinear scattering systems do not retain a thermody-

namic distribution under an adiabatic compression. Thus they do not allow a derivation

of the Wien displacement law. We suggest that such systems merely illustrate the mis-

match between classical mechanics and electromagnetism. When we turn to two purely

electromagnetic systems in thermal radiation at T = 0, in zero-point radiation, we find that

both systems have very special relativistic properties which suggest possibilities for thermal

equilibrium which are are lacking in other mechanical scattering systems. Finally we give

a closing summary.

C. Discussion of Fundamental Constants

Nonrelativistic classical mechanics has no fundamental constants. Thus there is no pre-

ferred length, time, or energy, nor any fundamental connection among them. Accordingly we

may choose independent scales of length, of time, and of energy, and indeed the commonly-

used systems of units reflect this independence. Thus given any nonrelativistic mechanical

system, a second system may be constructed which has twice the spatial dimensions, three

times the speed, and four times as much energy. In contrast, nature associates three fun-
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damental constants with the observed solutions of Maxwell’s electromagnetic theory. These

are the largest speed of electromagnetic waves c, the smallest amount of charge e, and Ste-

fan’s constant aS of blackbody radiation. Each of these constants is left unchanged under

transformations of the conformal group, the largest group of transformations which leaves

invariant Maxwell’s equations.

The three constants c, e, and aS connect together the scales of length, time, and energy

which enter electromagnetism. Thus the fundamental speed c joins the scales of length

and time. The elementary charge e couples the scales of energy and distance through the

potential energy U of two elementary charges separated by a distance r, U = e2/r. Stefan’s

constant aS couples energy density u to temperature T ; however, since the temperature

scale is not fundamental, we may consider Stefan’s constant aS divided by Boltzmann’s

constant kB to the fourth power so that Stefan’s law connecting total thermal energy density

u to the energy kBT of long-wavelength modes can be rewritten as u = (aS/k4

B)(kBT )4.

Evidently Stefan’s constant (in the form aS/k4

B) again connects the energy scale and the

length scale. Indeed, since Stefan’s constant can be reexpressed[14] in terms of Planck’s

constant ~, aS/k4

B = π2/(15~
3c3), we could just as well have chosen c, e, and ~ as our

fundamental constants of electromagnetic theory rather than c, e, and aS. We have chosen

to start with Stefan’s constant aS, which was introduced in 1879, rather than Planck’s

constant h = 2π~, which was introduced in 1900, so as to emphasize that the fundamental

constants arise in connection with solutions of classical electromagnetic theory and need not

have any connection with ideas of energy quanta.

Maxwell’s equations are conformal invariant[15], retaining exactly the same form under

a conformal transformation; the solutions of Maxwell’s equations are conformal covariant

in the sense that under conformal transformation one solution of Maxwell’s equations is

mapped into another solution of Maxwell’s equations. Rather than working with the

full conformal group, it is convenient here to consider only one small part of this group,

the dilatations. (Invariance under dilatations and Lorentz transformation implies con-

formal invariance.) Dilatations are the mappings where all lengths, times, and energies

are multiplied by a constant σ, r → r′ = σr, t → t′ = σt, and U → U ′ = (1/σ)U .

This arrangement preserves the fundamental electromagnetic constants– c with units of

length divided by time r/t = σr/(σt) = r′/t′, e with units of the square root of energy

times length (Ur)1/2 = (U/σ)1/2(σr)1/2 = (U ′r′)1/2, and ~ with units of energy times time
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Ut = (U/σ)σt = U ′t′. Since the scaling couples together length, time, and energy, we will

term this ”σltE−1 scale-invariance.”

We note that nature’s solutions to the homogeneous Maxwell’s equations couple the

scales of length, time, and energy but contain no special length, time, or energy. Thus

an electromagnetic plane wave in vacuum of frequency ν, and wavelength λ, and elec-

tric field amplitude E0 can also be reinterpreted by an observer using a dilated scale of

length, time, and energy as a plane wave of frequency ν ′ = (1/σ)ν, wavelength λ′ = σλ,

and amplitude E ′

0
= (1/σ2)E0. Similarly, blackbody radiation at temperature kBT

in a box of volume V , with total thermal energy U = (aS/k4

B)V (kBT )4 and entropy

S = (4/3)(aS/k4

B)V (kBT )3 would be reinterpreted by an observer using a dilated scale

of length, time, and energy as blackbody radiation at temperature kBT ′ = (1/σ)kBT , in a

volume V ′ = (σ3)V , with total energy U ′ = aSV ′(kBT ′)4 = aS(σ3V )(kBT/σ)4 = U/σ and

total entropy S ′ = (4/3)aSV ′(kBT ′)3 = (4/3)aS(σ3V )(kBT/σ)3 = S. Thus the entropy of

thermal radiation is unchanged by any σltE−1 scaling transformation.

The σltE−1 scale-invariance of electromagnetism can be continued from Maxwell’s equa-

tions over to classical electron theory with point masses, provided mass m is scaled as m

→ m′ = m/σ, corresponding to the scaling for energy U = mc2. Indeed Haantjes has

shown[16] that the conformal invariance of electromagnetism can be extended to classical

electron theory provided we transform a point mass as m → m′ = m/σ(x) where σ(x) is

the space-time dependent scale factor of the conformal transformation.

Maxwell’s equations, and indeed thermal radiation satisfy σltE−1 symmetry where the

scale factor σltE−1 is an arbitrary real number, 0 < σltE−1 < ∞. If we consider a change of

units corresponding to σltE−1 scaling, then any parameter (such as volume) which changes

under σltE−1 must also have a continuous range of values 0 to ∞, and is appropriate for

adiabatic change in mechanics and thermodynamics, except in the case of mass where we

usually think in terms of substitution rather than of continuous change of a parameter.

Indeed, the scaling m → m′ = m/σ implies that all masses are available in the theory

0 < m < ∞, and that there is no special value for mass. This aspect is not observed in

nature (for example, the mass of the electron is indeed special) and is regarded here as an

aspect beyond our present electromagnetic considerations.
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D. Linear and Nonlinear Oscillator Scatterers

Around the year 1900, Planck[17] considered a very small charged harmonic oscillator in

interaction with random electromagnetic radiation. The random classical radiation is ex-

pressed as a superposition of plane waves with random phases, extending throughout space.

The radiation provides a stationary random process for the electric field at any spatial point,

and any scattering system will be driven into random oscillation with an amplitude of mo-

tion which is again a stationary random process. Planck showed that in the small-charge

limit, a small linear oscillator (electric dipole approximation for the radiation interaction)

had the same average energy as a radiation mode of the same frequency. Since the harmonic

oscillator treated in the electric dipole approximation does not scatter the radiation into any

second frequency, it comes to equilibrium with any isotropic spectrum of random radiation.

Clearly, the small harmonic oscillator does not determine the equilibrium spectrum of ther-

mal radiation based upon its scattering. Now if classical Boltzmann statistical mechanics

is applied to the oscillator, then one finds energy equipartition for the oscillator and the

Rayleigh-Jeans spectrum for the radiation with which the oscillator is in equilibrium. How-

ever, we have noted that Boltzmann statistical mechanics can not be valid in any classical

system which includes the classical electromagnetic zero-point radiation which is present

in nature. Thus the derivation of the Rayleigh-Jeans spectrum from classical Boltzmann

statistical mechanics is irrelevant to a description of nature, except as a high-temperature

limit.

Of far more interest are derivations of radiation equilibrium from nonlinear scattering

calculations. A nonlinear oscillator which exchanges energy with several frequencies will

indeed enforce a radiation equilibrium; in general, it will absorb net radiation energy at

one frequency and emit net radiation energy at a different frequency. The energy of the

oscillator is balanced, but for a general radiation spectrum the random radiation is not in

equilibrium since there is a continual transfer of energy from one frequency to another. A

scattering calculation for a small nonlinear oscillator[11] shows that this scatterer pushes a

general radiation spectrum toward the Rayleigh-Jeans spectrum. This fits with van Vleck’s

work[10] of 1924 using a Fokker-Planck equation for the behavior of a general class of non-

linear oscillators. Van Vleck showed that nonrelativistic nonlinear oscillators treated in the

dipole approximation and small-charge limit come to equilibrium at the Boltzmann distribu-
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tion for the oscillators and the Rayleigh-Jeans spectrum for radiation. These calculations

are made using nonrelativistic physics and so include the possibility of particle velocities

exceeding the speed of light c; however, since the electric dipole approximation is used for

the interaction with radiation, only the frequencies of the motion and not the velocities

are relevant for the interaction with radiation, and hence no contradiction with relativity

becomes apparent. Indeed, one can consider relativistic mechanics for the particle motion

in a general class of potentials, and, as Blanco et al. showed[13], one still arrives at basically

the same uncomfortable conclusion involving a balance for Boltzmann statistics and the

Rayleigh-Jeans spectrum.

What the class of potentials considered in the nonlinear scattering calculations do not

satisfy is conformal symmetry. Conformal symmetry suggests a tight connection between

frequency, energy, and spatial extent, and this tight connection is relevant to the interaction

with radiation. The use of relativistic particle mechanics is indeed sufficient to guarantee

that the particle speed does not exceed the speed of light, but this does not come close to

the restrictions of conformal symmetry. For example, the nonlinear oscillator considered

in the scattering calculations[11][12] of 1976 and 1978 involves the same mechanical system

treated by Born.[18] Solving a Hamiltonian

H = p2/(2m) + mω2

0
x2/2 + Γx3/3 (1)

with a perturbative solution

x = D1 sin w + D2(3 + cos 2w) (2)

where the amplitudes D1 and D2 can be written in terms of the action variable J as

D1 = [2J/(mω0)]
1/2 and D2 = −Γω0J/(3ω4

0
m2) (3)

The hamiltonian and oscillation frequency can also be rewritten as

W = Jω0 − 5Γ2(ω0J)2/(12ω0m
3) and ω = ω0 − 5Γ2J/(6ω4

0
m3) (4)

The strength of the nonlinearity Γ determines the ratio of the amplitudes D1 and D2 of

the first and second harmonics which determines whether a little or a lot of radiation is

exchanged between ω and 2ω going into the electric dipole radiation mode labeled by l = 1,

m = 0. Thus the ratio of the radiation energy absorbed and emitted at the fundamental and

its second harmonic is freely adjustable through the arbitrary nonlinear coupling constant Γ.

Such arbitrariness does not exist for electromagnetic systems satisfying conformal symmetry.
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E. Wien Displacement Law and the Mismatch with the Boltzmann Distribution

In addition to the arbitrariness in the radiation connection for nonlinear oscillators, there

is a second troubling aspect in connection with the Wien displacement law. Thermodynam-

ics within the context of classical theory leads to the Stefan-Boltzmann law u = aST 4 and

to Wien’s displacement law U(ω, T ) = ωf(ω/T ), where u is the thermal energy per unit vol-

ume, aS is Stefan’s constant, U(ω, T ) is the energy per normal mode of (angular) frequency

ω and temperature T , and f(ω/T ) is an unknown function. Both these laws are experimen-

tally observed to hold in nature. The derivation of Wien’s displacement law depends upon

carrying out a quasi-static change in the system[19], usually an adiabatic compression of

the radiation which maintains the radiation as a thermal spectrum at a smoothly changing

temperature. The reflection of the radiation from a slowly-moving reflecting surface on a

piston is one method of carrying out the adiabatic compression.[20]

Now radiation inside a reflecting-walled cavity can not bring itself to the thermal equilib-

rium spectrum. Rather, there must be some scattering system which changes the spectrum

of radiation. As noted above, using small nonlinear oscillator scattering systems, we find

that equilibrium occurs for the Boltzmann distribution for the mechanical system and the

Rayleigh-Jeans law for the radiation spectrum. Following in the spirit of the traditional

derivation of the Wien displacement theorem, it is interesting to consider an adiabatic change

where both the radiation and the scattering systems are changed. We can consider an en-

semble of many identical nonlinear mechanical scattering systems in thermal equilibrium

with random radiation. The radiation acts as a heat bath for the ensemble of nonlinear

oscillators. If we now regard the mechanical scattering systems as decoupled from the ra-

diation, we can carry out adiabatic changes separately for the mechanical oscillators and

for the radiation. Now adiabatic compression for thermal radiation (when the shape of

the container is unchanged) is equivalent to a σltE−1 scale change. Thus any spectrum of

radiation with an energy U(ω, T ) = ωf(ω/T ) for a mode of frequency ω is carried into

U ′(ω′, T ′) = ω′f(ω′/T ′) =
ω

σ
f

(

ω/σ

T/σ

)

=
1

σ
ωf
(ω

T

)

=
1

σ
U(ω, T ) (5)

and specifically, the Rayleigh-Jeans spectrum at temperature T is carried into the Rayleigh-

Jeans spectrum at T ′ = T/σ. On the other hand, mechanics tells us that under a change

of parameter of a mechanical system, the action variables J do not change.[21] Thus the

probability distribution P (J, T, b) for the action variables of the mechanical ensemble at
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temperature T and parameter b does not change when the parameter b is slowly changed

to b′. Linear scattering systems with no harmonics H = Jω (which were used in the

suggestive classical derivations[5][6][7][8][9] of the Planck spectrum) are indeed transformed

into distributions which are again in equilibrium with the thermal radiation spectrum at

some new temperature T ′. Indeed Cole[22] has used this behavior of linear oscillator systems

to give a derivation of the Wien displacement theorem. Thus for linear oscillators H = Jω,

P (J, T, ω) = const exp

[

−
H

ωf(ω/T )

]

= const exp

[

−
J

f(ω/T )

]

(6)

becomes

P (J, T, ω) = const exp

[

−
J

f(ω/T )

]

= const exp

[

−
J

f(ω′/T ′)

]

= P (J, T ′, ω′) (7)

The linear oscillator keeps a thermal distribution but at a new frequency and new tem-

perature, ω/T = ω′/T ′. However, for nonlinear oscillators, an adiabatic change in some

mechanical parameter takes the ensemble of mechanical systems away from the Boltzmann

distribution. Thus for Born’s nonlinear oscillator mentioned above, a change in the param-

eter Γ does not preserve a Boltzmann distribution. There is no choice of temperature T ′

for which

P (J, T, Γ) = const exp

[

−
H

kBT

]

= const exp

[

−
Jω0 − {5Γ2(ω0J)2/(12ω0m

3)}

kBT

]

(8)

equals

P (J, T ′, Γ′) = const exp

[

−
{Jω0 − 5Γ′2(ω0J)2/(12ω0m

3)}

kBT ′

]

(9)

for all J if Γ 6= Γ′. After the adiabatic mechanical transformation, the nonlinear oscillators

are no longer in equilibrium with the Rayleigh-Jeans spectrum at any new temperature. It

seems surprising indeed that the scattering system which is supposed to bring radiation to

equilibrium can not maintain the equilibrium under any adiabatic change. This suggests

that these mechanical systems may not be allowed systems in classical radiation physics. It

is symptomatic of the mismatch between mechanics and electromagnetism.[23]

F. Adiabatic Changes and Zero-Point Radiation

We have suggested that mechanical systems which do not satisfy conformal symmetry are

not suitable for discussing classical radiation equilibrium. We have seen that they involve
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excessive freedom in their connections with radiation and also do not behave appropriately

under adiabatic changes of parameters. At this point we need to show that there are

indeed mechanical scattering systems for radiation which overcome these objections. In this

section, we will limit our attention to temperature T = 0 where only zero-point radiation

is present. We have already remarked that zero-point radiation is the unique spectrum of

random radiation which is invariant under conformal transformation.[4] We suggest that

purely electromagnetic scattering systems (which are related to conformal symmetry) will

not scatter zero-point radiation toward a new spectrum but will give radiation equilibrium

at temperature T = 0.

We emphasize that allowed systems should not exchange energy with zero-point radiation

during adiabatic changes. Now the zero-point radiation is invariant under any adiabatic

change. However, when a mechanical parameter is changed adiabatically, the mechanical

system takes on a new average energy and a new frequency pattern. The mechanical system

and radiation (in the small-charge limit) can be regarded as two separate thermodynamic

systems which can be brought into contact through the electric charge. An average exchange

of energy between the mechanical system and the radiation during an adiabatic change

suggests a change in entropy, and at T = 0 the ideas of thermodynamics suggest that no

changes of entropy are possible.

Some aspects of this problem were explored[24] in 1978. It was pointed out that all the

small nonrelativistic mechanical systems without harmonics behaved appropriately under

changes of mechanical parameters in zero-point radiation. In zero-point radiation the

distribution of action variables for these systems takes the form

P (J) =
1

~/2
exp

[

−
J

~/2

]

(10)

and has no dependence upon any mechanical parameters. Such systems include point har-

monic oscillator systems in several dimensions and in magnetic fields, and also nonrelativistic

cyclotron motion for a charge in a magnetic field. The scattering systems described in the

earlier work are treated in the electric dipole approximation and interact with radiation at

single frequencies without coupling to any harmonics. Thus there is no exchange of radia-

tion between radiation modes of different frequency, and hence no radiation equilibrium is

forced by the mechanical scattering systems.

However, this is a limiting approximation made for small systems when the speed of
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the particle is close to zero. Any finite-velocity motion by a charged particle entails the

emission of radiation at all the harmonics of the fundamental frequency with a distribution

of radiated energy among the harmonics which is determined by the parameter β = v/c.

For example, a charged particle e moving in the xy-plane in a circle of radius r with speed

v = cβ gives a power radiated per unit solid angle at angle θ from the z-axis at the nth

harmonic at frequency nω = nv/r in the form[25]

dPn

dΩ
=

e2ω4r2

2πc3
n2

{

[

dJn(nβ sin θ)

d(nβ sin θ)

]2

+
cot2 θ

β2
J2

n(nβ sin θ)

}

(11)

The particle can also absorb energy at each harmonic if there is energy present in the

radiation field. Thus all classical electromagnetic systems of finite size interact with many

frequencies and hence determine a spectrum of radiation equilibrium.

It must be emphasized just how different is this finite-size mechanism for equilibrium

from that involved in point nonlinear mechanical oscillators. For charged nonlinear scatterers

treated in the dipole approximation, the equilibrium is forced by the mechanical system with

its connection between harmonics depending upon some arbitrary nonlinear parameter. For

Born’s nonlinear oscillator mentioned earlier, Γ is the nonlinear parameter. The nonlinear

mechanical oscillator contains within itself the ratios of the amplitudes for the harmonics

with no reference to the relative speed β = v/c of the particle and the radiation. On the other

hand, the finite size of purely harmonic motions gives an electromagnetic basis for forcing

equilibrium. For uniform circular motion, the relative speed β = v/c of the particle and

the radiation completely determines the relative power emitted into the various harmonics.

In addition to forcing an equilibrium radiation spectrum, finite-size systems have new

possibilities for their distributions P (J, ω0) of action variables in zero-point radiation. We

must determine whether the adiabatic invariance of the distribution P (J) which held in

zero-point radiation in the nonrelativistic limit continues for the full relativistic treatment.

G. Aspects of Scattering by Relativistic Cyclotron Motion

1. Equations of Motion

The simplest purely electromagnetic scattering system of which we are aware is cyclotron

motion, the circular motion of a charged particle in a uniform magnetic field. Here we wish
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to point out some of the aspects of scattering by this conformally covariant system. We

hope to complete and report on a full scattering calculation in the not distant future.

When we ignore the connection to radiation, cyclotron motion of a particle of charge e

and mass m in a uniform magnetic field B (in the lab frame) is described by the hamiltonian

H =

√

(p −
e

c
A)2c2 + m2c4 where A(r, t) =

B × r

2c
(12)

The equations of motion follow as

m
d

dt

(

v

(1 − v2/c2)1/2

)

= e
v

c
× B (13)

or
d2r

dτ 2
=

dr

dτ
×−→ω0 with −→ω0 = eB/(mc) (14)

where τ is the particle proper time

dτ = dt/γ =
√

1 − v2/c2dt (15)

We note from Eq. (14) that (independent of the orbital radius and velocity) the orbital

rotation rate is always ω0 when measured using the particle’s proper time. Taking the charge

e as positive and the magnetic field in the negative z-direction, the solutions correspond to

uniform circular motion at frequency ω = ω0/γ with γ = (1 − v2/c2)−1/2,

x − x0 = r cos[ωt + φ] y − y0 = r sin[ωt + φ] where ω = ω0/γ (16)

The angular momentum J , including both mechanical and electromagnetic field angular

momentum is an adiabatic invariant[27]

J = mγvr −
eBr2

2c
=

1

2
mγvr =

eBr2

2c
(17)

where the last two forms follow from the equation of motion for the circular orbit, mγv2/r =

evB/c. The action variable J determines the orbit radius and also the orbit velocity as

r =

√

2J

mω0

β =

√

2Jω0/(mc2)

1 + 2Jω0/(mc2)
γ =

√

1 +
2Jω0

mc2
(18)

and these expressions hold for all J and ω0. As J ranges over the interval (0,∞), the

velocity parameter β (or γ) is a monotonically increasing function of J for every choice of

m or ω0. There is no preferred value of β or γ.
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2. Nonrelativistic Limit of Cyclotron Motion

In the limit of nonrelativistic motion in the lab frame, 2Jω0/(mc2) << 1, cyclotron

motion in classical zero-point radiation was treated[24][26] in 1978 and 1980. In this limit,

all the motion is at the single frequency ω0 = eB/(mc), since ω → ω0 as γ → 1. A Fokker-

Planck equation was obtained for the probability distribution P (J) of the action variable J in

a random radiation spectrum with energy per normal mode U(ω) = (1/2)~ω corresponding

to zero-point radiation. The Fokker-Planck equation gave the probability distribution of

Eq. (10). This distribution seems exactly appropriate for zero-point radiation; even when

the magnetic field B is changed, and hence the nonrelativistic frequency ω0 = eB/(mc) is

changed, the mechanical motion remains in equilibrium with the zero-point radiation and

does not exchange any energy (on average) with the zero-point radiation. All changes of

average mechanical energy when the magnetic field B is changed are due to the Faraday-

induced electric field associated with the changing B.

3. Relativistic Treatment of Cyclotron Motion

However, what happens when we go to the full relativistic treatment? In the relativistic

treatment, the mechanical motion varies in frequency with J since ω = ω0/γ, and also the

charge interacts with radiation at all the harmonics of the mechanical frequency. Do we still

have radiation equilibrium? Do we still have P (J) independent of ω0 in order to maintain

our ideas of entropy under adiabatic changes of magnetic field at temperature T = 0?

Now relativistic cyclotron motion is an electromagnetic system satisfying conformal in-

variance. Thus we expect that the conformal-invariant zero-point radiation spectrum is

maintained and that the distribution P (J) maintains the form given in Eq. (10). In order

to prove this we need a complete calculation of the radiation scattering. However, for the

present we will present some suggestive evidence. The Fokker-Planck equation needed to

obtain P (J) requires calculations of the radiation energy loss per unit time by the mechan-

ical particle motion, the average energy absorbed per unit time from zero-point radiation,

and the average of the square of the energy absorbed per unit time from zero-point radiation.

It is easy to calculate the radiated energy per unit time for a charged particle e moving in
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a circle of radius r with frequency ω as

Pemitted =
2

3

e2

c3
ω4γ4r2 (19)

where γ = (1 − v2/c2)−1/2 = [1 − (rω/c)2]−1/2. In the nonrelativistic limit, the radiation

emission for cyclotron motion is

P cyclotronNR
emitted =

2

3

e2

c3
ω4

0
r2 (20)

since in the nonrelativistic limit γ → 1 and ω = ω0/γ → ω0. But now notice when we

substitute the fully relativistic expressions ω = ω0/γ and r =
√

2J/(mω0) for cyclotron

motion into the fully relativistic expression for Pemitted. We find

P cyclotronR
emitted =

2

3

e2

c3
ω4γ4r2 =

2

3

e2

c3
ω4

0

2J

mω0

for all J and ω0 (21)

This expression is identical with the nonrelativistic expression. When written in terms

of J and ω0, the expression makes no explicit reference to any velocity and retains its

nonrelativistic form for all values of J and ω0. If we go to the inertial frame in which

the charge is at rest at some instant, then for a small time interval the particle motion

is nonrelativistic and the charge is found moving in circular arcs with the same frequency

ω0 = eB/(mc) as is involved in nonrelativistic motion and with the same J as is involved in

the lab motion. Also, the zero-point radiation spectrum is Lorentz invariant and hence the

same in any inertial frame. Thus in the momentarily comoving reference frame, where the

motion is nonrelativistic, cyclotron motion seems to take the same form as for nonrelativistic

motion in the lab frame. This suggests the possibility that relativistic cyclotron motion will

maintain the same distribution P (J) in Eq. (10) which is invariant under adiabatic changes,

exactly as required for our ideas of thermodynamic equilibirum at T = 0.

Furthermore, the connection between the orbit and the relative energy radiated into

various harmonics is not at our disposal, as it is in the nonlinear oscillator case, but rather

is tightly connected to formulae involving spherical Bessel functions. This suggests the

possibility that this purely electromagnetic system will allow equilibrium with zero-point

radiation.

4. Relativistic Limit of the Harmonic Potential

In order to emphasize that cyclotron motion has very special properties not encountered

with nonelectromagnetic systems, we can consider relativistic motion in a harmonic oscillator
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potential in the lab frame, when limiting ourselves to circular orbits. In the nonrelativistic

limit, motion in a harmonic oscillator potential VSHO(r) = (1/2)kr2 is at the frequency

ω0 =
√

k/m and involves no harmonics. In terms of relativistic particle mechanics for a

circular orbit in this same potential,

mγ
v2

r
= kr J = mγvr (22)

Combining these expressions gives

γ3β4 =

(

Jω0

mc2

)2

with ω0 =

√

k

m
and β =

ωr

c
ω =

ω0

γ1/2
(23)

Solving the equation connecting β and J , we find that

β ≈

√

Jω0

mc2
r ≈

(

J

mω0

)1/2

for
Jω0

mc2
<< 1 (24)

and

γ ≈

(

Jω0

mc2

)2/3

r ≈

(

Jc

mω2

0

)1/3

for
Jω0

mc2
>> 1 (25)

Then in terms of the parameter Jω0/(mc2), radiation emission is given by

P circularSHO
emission ≈

2

3

e2

c3
(cω0)

2

(

Jω0

mc2

)

for
Jω0

mc2
<< 1 (26)

while

P circularSHO
emission ≈

2

3

e2

c3
(cω0)

2

(

Jω0

mc2

)2

for
Jω0

mc2
>> 1 (27)

The change from linear over to quadratic dependence on J shows clearly that P circularSHO
emission

does not retain its nonrelativistic functional form for the harmonic oscillator potential.

Indeed we notice the relation ω = ω0/γ
1/2 which holds for the harmonic oscillator po-

tential is not connected to particle proper time. If we go to the momentarily comoving

reference frame in this case, the rotation frequency in this frame depends upon the speed

of the particle in its orbit in the lab frame; it does not take the nonrelativistic harmonic

oscillator value ω0 =
√

k/m. Thus in zero-point radiation, the energy pick up and loss in

the instantaneous rest frame of the particle depends upon a frequency which varies with the

velocity of the particle in the lab frame. The pick up and loss of energy in the momentarily

comoving reference frame of the particle do not take the same form as for nonrelativistic

motion. Relativistic nonelectromagnetic systems do not have characteristics suitable for

thermodynamic equilibrium with zero-point radiation.
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H. Comments on the Coulomb Potential

In the previous section, we focused our attention on cyclotron motion because this seems

the simplest electromagnetic scattering system; cyclotron motion has an easily-calculable

nonrelativistic limit for large mass m, and in zero-point radiation seems to retain its non-

relativistic forms at all velocities when expressed in terms of J and ω0. However, despite

its complications, the Coulomb potential allows some interesting observations.[28]

The Coulomb potential VC(r) = e2/r is the only potential of the form V (r) = k/rn where

the constant k giving the strength of the potential does not change under a σltE−1 scale

transformation. Since an energy must transform as 1/σ, V ′ = (1/σ)V, we have

V ′(r′) = k′/r′n = k′/(σnrn) = (k′/σn)/rn = (1/σ)k/rn = (1/σ)V (r) (28)

so that only for n = 1 do we have k′ = k. Thus the electronic charge e appearing in

the Coulomb potential is invariant under conformal transformation and no other potential-

strength constant is so invariant.

Since for non-Coulomb potentials the constant k changes with the choice of scale σltE−1 ,

k must be treated as a parameter subject to variation 0 < k < ∞, and can be used to

carry out adiabatic changes in the mechanical system. Using such adiabatic changes, it

may well be possible to transfer energy from one frequency range to another in the presence

of zero-point radiation, hence violating our ideas of entropy changes at temperature T = 0.

On the other hand for the Coulomb potential, the strength parameter e2 is scale invariant

and hence is not subject to adiabatic change.

The hamiltonian for a mass m in the Coulomb potential H = (p2c2 +m2c4)1/2 + e2/r can

be rewritten in terms of action-angle variables as[29]

H = mc2

(

1 +
(e2/c)2

[(J ′

3
− J ′

2
) +

√

J ′2

2
− (e2/c)2]2

)

−1/2

(29)

We note that H/(mc2) involves only the action variables J ′

2
, J ′

3
, and the quantity e2/c. In

the presence of zero-point radiation (which is scale invariant and indeed invariant under

conformal transformation), the only scale for length, time, or energy is through the mass

m, and the pattern of velocities is the same independent of the mass m. Thus for a point

charge in a Coulomb potential in zero-point radiation, we can not obtain a nonrelativistic

limit by considering a large-mass limit. Rather, if one can find the solution for this classical
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hydrogen atom for one choice of the mass m, the same distribution P (J) will hold for any

other mass, while all lengths, times, and energies will be rescaled, and the velocities will be

left unchanged.

Cyclotron motion and Coulomb potential motion in zero-point radiation are very different.

Cyclotron motion depends upon the mass m and the pure number Jω0/(mc2) = JeB/(m2c3)

where 0 < J < ∞. In the presence of zero-point radiation, all average quantities depend

upon the mass m and ~ω0/(mc2) in the small-charge limit. Here there is no reason for a

preferred choice of the value of ~. However, for the Coulomb potential, the hamiltonian

form (29) in terms of action variables shows that e2/c is a lower bound[30] for the action

variable J ′

2
so that we require e2/c < J ′

2
< ∞. Now the values of the action variables in

zero-point radiation are dependent upon the multiplicative constant ~ giving the scale of

the zero-point radiation. Thus this suggests the basis for a connection between e2/c and

~. If ~ is too small, then the value of J ′

2
will be too close to the cut-off e2/c which appears

in the relativistic mechanics of the Coulomb potential. We again suggest[1] that a full

understanding of the behavior of a charged particle in the Coulomb potential in classical

zero-point radiation will lead to a calculation of the fine structure constant.

I. Closing Summary

In this work we revisit the suggestion that scattering by classical electromagnetic systems

(which involve conformal symmetry) will provide an explanation for the Planck spectrum

for thermal radiation within the context of classical physics. This time we go beyond the

considerations of scaling symmetry which were mentioned fifteen years ago. We suggest that

the several calculations of radiation scattering using nonlinear mechanical systems merely

illustrate the mismatch between mechanics and electromagnetism and are not relevant for

understanding nature. We point out the curious fact that most mechanical systems do not

preserve the Boltzmann distribution under adiabatic change of a parameter. This fact seems

at variance with our expectations in connection with derivations of Wien’s displacement

theorem where we expect a scatterer which enforces an equilibrium spectrum to remain in

equilibrium during a suitable adiabatic change. Linear oscillators do not enforce radiation

equilibrium in the nonrelativistic approximation, but indeed do impose equilibrium when

treated relativistically. We emphasize some of the striking properties of charged particle
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motion in a Coulomb potential or in a uniform magnetic field which suggest the possibility

that these systems will fit with classical thermal radiation. In particular, cyclotron motion

involves linear motion in the nonrelativistic approximation and has surprising continuities

in form when treated relativistically, and the Coulomb potential is unique in not allowing

adiabatic changes of the potential-strength parameter e. Finally we note that it may be

possible to give a full scattering calculation in the case of cyclotron motion which should

provide a crucial test of the suggested connection between conformal symmetry and classical

thermal radiation.

Awareness of the mismatch between mechanics and electromagnetism seems to involve

contrasting perspectives between relativistic invariance and conformal invariance. In the

last decades of the nineteenth century, physicists became concerned about the mismatch

between mechanics and electromagnetism in connection with the fundamental constant c,

the unique value of the speed of light in vacuum appearing in nature. In the early years

of the 20th century, the relativistic symmetry of Maxwell’s equations and its solutions was

recognized, and the constant c was take as a fundamental connection between the scales of

length and time. Within classical physics, there has been no comparable attention to the

mismatch between mechanics and electromagnetism reflected in the fundamental electronic

charge e and Stefan’s constant aS (or equivalently Planck’s constant ~) which occur in

the solutions to Maxwell’s equations which appear in nature. At present these constants

which couple energy and length are not usually associated with the conformal invariance of

Maxwell’s equations discovered by Cunningham and Bateman in 1909.
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